Jump to content

Astronaut Nicole Mann Throws First Pitch at Giants-Angels Game  


NASA

Recommended Posts

  • Publishers
acd24-0081-028.jpg?w=2048
NASA/Brandon Torres

NASA astronaut Nicole Mann waves as she is introduced before throwing out the ceremonial first pitch at the San Francisco Giants versus Los Angeles Angels game at Oracle Park in San Francisco on June 14, 2024. Mann was honored for her accomplishments at the Giants’ Native American Heritage Night. She is the first Indigenous woman from NASA to go to space, having served as commander of NASA’s SpaceX Crew-5 mission, which launched in 2022.  

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The Soyuz rocket launches to the International Space Station with Expedition 72 crew members: NASA astronaut Don Pettit, Roscosmos cosmonauts Alexey Ovchinin, and Ivan Vagner, onboard, Wednesday, Sept. 11, 2024, at the Baikonur Cosmodrome in Kazakhstan. Credit: NASA/Bill Ingalls NASA astronaut Don Pettit, accompanied by Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner, arrived at the International Space Station Wednesday, bringing its number of residents to 12 for the 13-day handover period.

      After a two-orbit, three-hour journey to the station, the Roscosmos Soyuz MS-26 spacecraft automatically docked to the orbiting laboratory’s Rassvet module at 3:32 p.m. EDT. The spacecraft launched at 12:23 p.m. EDT (9:23 p.m. Baikonur time) from the Baikonur Cosmodrome in Kazakhstan.
      NASA’s coverage of hatch opening will stream at 5:30 p.m. on NASA+, the NASA app, YouTube, and the agency’s website. Hatch opening is scheduled to begin at 5:50 p.m. Learn how to stream NASA content through a variety of platforms, including social media.

      Once aboard, the trio will join Expedition 71 crew members, including NASA astronauts Tracy C. Dyson, Mike Barratt, Matthew Dominick, Jeanette Epps, Butch Wilmore, and Suni Williams, as well as Roscosmos cosmonauts Nikolai Chub, Alexander Grebenkin, and Oleg Kononenko. Expedition 72 will begin Monday, Sept. 23, upon the departure of Dyson, Chub, and off-going station commander Kononenko, completing a six-month stay for Dyson and a year-long expedition for Chub and Kononenko.

      Pettit, Ovchinin, and Vagner will spend approximately six months aboard the orbital outpost advancing scientific research as Expedition 71/72 crew members before returning to Earth in the spring of 2025. This is Pettit and Ovchinin’s fourth spaceflight and Vagner’s second.

      During Expedition 72, two new crews will arrive aboard the space station, including NASA’s SpaceX Crew-9 launching in September, followed by Crew-10, scheduled for launch in February 2025.  

      Follow Pettit on X throughout his mission and get the latest space station crew news on Instagram, Facebook, and X.

      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov

      Leah Cheshier
      Johnson Space Center, Houston
      281-483-5111
      leah.d.cheshier@nasa.gov
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Tests on Earth appear to confirm how the Red Planet’s spider-shaped geologic formations are carved by carbon dioxide.
      Spider-shaped features called araneiform terrain are found in the southern hemisphere of Mars, carved into the landscape by carbon dioxide gas. This 2009 image taken by NASA’s Mars Reconnaissance Orbiter shows several of these distinctive formations within an area three-quarters of a mile (1.2 kilometers) wide. NASA/JPL-Caltech/University of Arizona Dark splotches seen in this example of araneiform terrain captured by NASA’s Mars Reconnaissance Orbiter in 2018 are believed to be soil ejected from the surface by carbon dioxide gas plumes. A set of experiments at JPL has sought to re-create these spider-like formations in a lab. NASA/JPL-Caltech/University of Arizona Since discovering them in 2003 via images from orbiters, scientists have marveled at spider-like shapes sprawled across the southern hemisphere of Mars. No one is entirely sure how these geologic features are created. Each branched formation can stretch more than a half-mile (1 kilometer) from end to end and include hundreds of spindly “legs.” Called araneiform terrain, these features are often found in clusters, giving the surface a wrinkled appearance.
      The leading theory is that the spiders are created by processes involving carbon dioxide ice, which doesn’t occur naturally on Earth. Thanks to experiments detailed in a new paper published in The Planetary Science Journal, scientists have, for the first time, re-created those formation processes in simulated Martian temperatures and air pressure.
      Here’s a look inside of JPL’s DUSTIE, a wine barrel-size chamber used to simulate the temperatures and air pressure of other planets – in this case, the carbon dioxide ice found on Mars’ south pole. Experiments conducted in the chamber confirmed how Martian formations known as “spiders” are created.NASA/JPL-Caltech “The spiders are strange, beautiful geologic features in their own right,” said Lauren Mc Keown of NASA’s Jet Propulsion Laboratory in Southern California. “These experiments will help tune our models for how they form.”
      The study confirms several formation processes described by what’s called the Kieffer model: Sunlight heats the soil when it shines through transparent slabs of carbon dioxide ice that built up on the Martian surface each winter. Being darker than the ice above it, the soil absorbs the heat and causes the ice closest to it to turn directly into carbon dioxide gas — without turning to liquid first — in a process called sublimation (the same process that sends clouds of “smoke” billowing up from dry ice). As the gas builds in pressure, the Martian ice cracks, allowing the gas to escape. As it seeps upward, the gas takes with it a stream of dark dust and sand from the soil that lands on the surface of the ice.
      When winter turns to spring and the remaining ice sublimates, according to the theory, the spiderlike scars from those small eruptions are what’s left behind.
      These formations similar to the Red Planet’s “spiders” appeared within Martian soil simulant during experiments in JPL’s DUSTIE chamber. Carbon dioxide ice frozen within the simulant was warmed by a heater below, turning it back into gas that eventually cracked through the frozen top layer and formed a plume.NASA/JPL-Caltech Re-Creating Mars in the Lab
      For Mc Keown and her co-authors, the hardest part of conducting these experiments was re-creating conditions found on the Martian polar surface: extremely low air pressure and temperatures as low as minus 301 degrees Fahrenheit (minus 185 degrees Celsius). To do that, Mc Keown used a liquid-nitrogen-cooled test chamber at JPL, the Dirty Under-vacuum Simulation Testbed for Icy Environments, or DUSTIE.
      “I love DUSTIE. It’s historic,” Mc Keown said, noting that the wine barrel-size chamber was used to test a prototype of a rasping tool designed for NASA’s Mars Phoenix lander. The tool was used to break water ice, which the spacecraft scooped up and analyzed near the planet’s north pole.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This video shows Martian soil simulant erupting in a plume during a JPL lab experiment that was designed to replicate the process believed to form Martian features called “spiders.” When a researcher who had tried for years to re-create these conditions spotted this plume, she was ecstatic. NASA/JPL-Caltech For this experiment, the researchers chilled Martian soil simulant in a container submerged within a liquid nitrogen bath. They placed it in the DUSTIE chamber, where the air pressure was reduced to be similar to that of Mars’ southern hemisphere. Carbon dioxide gas then flowed into the chamber and condensed from gas to ice over the course of three to five hours. It took many tries before Mc Keown found just the right conditions for the ice to become thick and translucent enough for the experiments to work.
      Once they got ice with the right properties, they placed a heater inside the chamber below the simulant to warm it up and crack the ice. Mc Keown was ecstatic when she finally saw a plume of carbon dioxide gas erupting from within the powdery simulant.
      “It was late on a Friday evening and the lab manager burst in after hearing me shrieking,” said Mc Keown, who had been working to make a plume like this for five years. “She thought there had been an accident.”
      The dark plumes opened holes in the simulant as they streamed out, spewing simulant for as long as 10 minutes before all the pressurized gas was expelled.
      The experiments included a surprise that wasn’t reflected in the Kieffer model: Ice formed between the grains of the simulant, then cracked it open. This alternative process might explain why spiders have a more “cracked” appearance. Whether this happens or not seems dependent on the size of soil grains and how embedded water ice is underground.
      “It’s one of those details that show that nature is a little messier than the textbook image,” said Serina Diniega of JPL, a co-author of the paper.
      What’s Next for Plume Testing
      Now that the conditions have been found for plumes to form, the next step is to try the same experiments with simulated sunlight from above, rather than using a heater below. That could help scientists narrow down the range of conditions under which the plumes and ejection of soil might occur.
      There are still many questions about the spiders that can’t be answered in a lab. Why have they formed in some places on Mars but not others? Since they appear to result from seasonal changes that are still occurring, why don’t they seem to be growing in number or size over time? It’s possible that they’re left over from long ago, when the climate was different on Mars— and could therefore provide a unique window into the planet’s past.
      For the time being, lab experiments will be as close to the spiders as scientists can get. Both the Curiosity and Perseverance rovers are exploring the Red Planet far from the southern hemisphere, which is where these formations appear (and where no spacecraft has ever landed). The Phoenix mission, which landed in the northern hemisphere, lasted only a few months before succumbing to the intense polar cold and limited sunlight.
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2024-122
      Share
      Details
      Last Updated Sep 11, 2024 Related Terms
      Mars Jet Propulsion Laboratory Explore More
      5 min read NASA JPL Scientists, Engineers Collaborate With Artists for Exhibition
      Article 2 days ago 6 min read NASA’s Hubble, MAVEN Help Solve the Mystery of Mars’ Escaping Water
      Mars was once a very wet planet as is evident in its surface geological features.…
      Article 6 days ago 5 min read NASA JPL Developing Underwater Robots to Venture Deep Below Polar Ice
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      ISS003-E-5388 (11 September 2001) — One of a series of pictures taken of metropolitan New York City (and other parts of New York as well as New Jersey) by one of the Expedition Three crew members onboard the International Space Station (ISS) at various times during the day of September 11, 2001. The image shows a smoke plume rising from the Manhattan area. The orbital outpost was flying at an altitude of approximately 250 miles. The image was recorded with a digital still camera. Please note: The date identifiers on some frames (other than those that indicate Sept. 11, 2001) are not accurate due to a technical problem with one of the Expedition Three cameras.NASA Editor’s Note:The following is the text of a letter from Expedition Three Commander Frank L. Culbertson (Captain, USN Retired), reflecting on the events of September 11.
      September 12, 2001; 7:34 p.m.
      I haven’t written very much about specifics of this mission during the month I’ve been here, mainly for two reasons: the first being that there has been very little time to do that kind of writing, and secondly because I’m not sure how comfortable I am sharing thoughts I share with family and friends with the rest of the world.
      Well, obviously the world changed today. What I say or do is very minor compared to the significance of what happened to our country today when it was attacked by …. by whom? Terrorists is all we know, I guess. Hard to know at whom to direct our anger and fear…
      I had just finished a number of tasks this morning, the most time-consuming being the physical exams of all crew members. In a private conversation following that, the flight surgeon told me they were having a very bad day on the ground. I had no idea…
      He described the situation to me as best he knew it at ~0900 CDT. I was flabbergasted, then horrified. My first thought was that this wasn’t a real conversation, that I was still listening to one of my Tom Clancy tapes. It just didn’t seem possible on this scale in our country. I couldn’t even imagine the particulars, even before the news of further destruction began coming in.
      Vladimir came over pretty quickly, sensing that something very serious was being discussed. I waved Michael into the module as well. They were also amazed and stunned. After we signed off, I tried to explain to Vladimir and Michael as best I could the potential magnitude of this act of terror in downtown Manhattan and at the Pentagon. They clearly understood and were very sympathetic.
      I glanced at the World Map on the computer to see where over the world we were and noticed that we were coming southeast out of Canada and would be passing over New England in a few minutes. I zipped around the station until I found a window that would give me a view of NYC and grabbed the nearest camera. It happened to be a video camera, and I was looking south from the window of Michael’s cabin.
      The smoke seemed to have an odd bloom to it at the base of the column that was streaming south of the city. After reading one of the news articles we just received, I believe we were looking at NY around the time of, or shortly after, the collapse of the second tower. How horrible…
      I panned the camera all along the East Coast to the south to see if I could see any other smoke around Washington, or anywhere else, but nothing was visible.
      It was pretty difficult to think about work after that, though we had some to do, but on the next orbit we crossed the US further south. All three of us were working one or two cameras to try to get views of New York or Washington. There was haze over Washington, but no specific source could be seen. It all looked incredible from two to three hundred miles away. I can’t imagine the tragic scenes on the ground.
      Other than the emotional impact of our country being attacked and thousands of our citizens and maybe some friends being killed, the most overwhelming feeling being where I am is one of isolation.
      Next day….
      I guess the fatigue and emotional strain got the best of me. I couldn’t stay awake and continue to write. Today was still difficult, but we started getting more information, plus we had the honor of talking directly with the Center Director, Roy Estess, who assured us that the ground teams would continue to work and ensure our safety, as well as the safe operation of the Station. We also heard from our Administrator, Mr. Goldin, who added that the partners in the Program are all totally committed to continuing safe operations and support. These were never questions for me. I know all these people! The ground teams have been incredibly supportive, very understanding of the impact of the news, and have tried to be as helpful as possible. They have all been very professional and focused though I can’t imagine the distraction of this type of news coming in and the thought that government buildings might be at risk. They never skipped a beat, even when relocating control centers. And a group of senior personnel and friends gave us a pretty thorough briefing on what was known and what was being done in the government and at NASA on Tuesday afternoon, which was very helpful and kind of them to do in the midst of all the turmoil. The Russian TsUP has also been supportive and helpful, trying to uplink news articles when our own assets were inoperable, and saying kind words…
      My crewmates have been great, too. They know it’s been a tough day for me and the folks on the ground, and they’ve tried to be as even keeled and helpful as possible. Michael even fixed me my favorite Borscht soup for dinner. And they give me plenty of room to think when I needed it. They are very sympathetic and of course outraged at whoever would do this.
      I know so many people in Washington, so many people who travel to DC and NYC, so many who are pilots, that I felt sure I would receive at least a few pieces of bad news over the next few days. I got the first one today when I learned that the Captain of the American Airlines jet that hit the Pentagon was Chic Burlingame, a classmate of mine. I met Chic during plebe summer when we were in the D&B together, and we had lots of classes together. I can’t imagine what he must of gone through, and now I hear that he may have risen further than we can even think of by possibly preventing his plane from being the one to attack the White House. What a terrible loss, but I’m sure Chic was fighting bravely to the end. And tears don’t flow the same in space…
      It’s difficult to describe how it feels to be the only American completely off the planet at a time such as this. The feeling that I should be there with all of you, dealing with this, helping in some way, is overwhelming. I know that we are on the threshold (or beyond) of a terrible shift in the history of the world. Many things will never be the same again after September 11, 2001. Not just for the thousands and thousands of people directly affected by these horrendous acts of terrorism, but probably for all of us. We will find ourselves feeling differently about dozens of things, including probably space exploration, unfortunately.
      It’s horrible to see smoke pouring from wounds in your own country from such a fantastic vantage point. The dichotomy of being on a spacecraft dedicated to improving life on the earth and watching life being destroyed by such willful, terrible acts is jolting to the psyche, no matter who you are. And the knowledge that everything will be different than when we launched by the time we land is a little disconcerting. I have confidence in our country and in our leadership that we will do everything possible to better defend her and our families, and to bring justice for what has been done. I have confidence that the good people at NASA will do everything necessary to continue our mission safely and return us safely at the right time. And I miss all of you very much. I can’t be there with you in person, and we have a long way to go to complete our mission, but be certain that my heart is with you, and know you are in my prayers.
      Humbly,
      Frank
      September 14, 2001; 10:49 p.m.
      An update to the last letter… Fortunately, it’s been a busy week up here. And to prove that, like our country, we are continuing on our intended path with business as usual (as much as possible). Tonight the latest addition to the station, the Russian Docking Compartment will be launched from Baikonur, Kazakhstan. On Saturday night (US time), it will dock with us, at a port never used before on the nadir side of the Service Module. This new module will give us another place to dock a Progress or Soyuz and will provide a large airlock with two useable hatches for conducting EVA’s in Russian Orlan suits, which we will do a few of before we come home.
      The problem before in dealing with this week was too little news. The problem now is too much. It came all at once when email was restored, and there’s not enough time to read it all! Plus it’s too hard to deal with all of it at once. But I appreciate getting it, and I really appreciate the great letters of support and friendship I am receiving.
      We are doing well on board, getting our work done, and talking about things. Last night we had a long discussion over dinner about the significance of these events, the possible actions to follow, and what should be done. After dinner, Michael made a point of telling me that every email he received from friends in Russia said specifically to tell me how sorry they were that this happened, extending their condolences, and asking how I was doing. Vladimir taught me the Russian word for “condolences” after talking to the previous CDR, Yuri Usachev, on the phone in Star City. (Both the Russian and the English words are much too long to pronounce easily.) Very kind people.
      For the last two days, the Russian MCC has been good enough to transmit live broadcasts of radio news about the event and associated stories, to make sure I was well informed. Every specialist who has come on the line to discuss a procedure or a problem has at some point extended greetings to me with kind words. Tonight the Russian capcom told us that because of the special day of remembrance in the US, all day people had been bringing flowers and lining all the walls of the US embassy in Moscow, and this evening they were lighting candles in the street outside the embassy. How the world has changed.
      People everywhere seem to recognize the senselessness and horror in this attack. And the tremendous loss. Moscow has dealt with these kind of problems in the last few years with apartment and subway bombings, so they are as anxious to get rid of this threat as we are. But the bottom line is that there are good people everywhere who want to live in peace. I read that a child asked, “America is so good to other countries, we always help everyone, how can they hate us so much?”
      I hope the example of cooperation and trust that this spacecraft and all the people in the program demonstrate daily will someday inspire the rest of the world to work the same way. They must!
      Unfortunately, we won’t be flying over the US during the time people are lighting candles. Don’t know if we could see that anyway. We did, however, see a very unusual and beautiful sight a few minutes ago: the launch of our Docking Compartment on a Soyuz booster. We were overtaking it and it came into view about three minutes after its launch from Baikonur as the sun hit our station, so it was still in the dark. It looked like a large comet with a straight, wide tail silhouetted against the dark planet beneath. Despite some bad lighting for a while as the sun hit our window at a low angle, I managed some video of it as first we passed the rocket, and then watched it begin to catch up as it gained altitude and speed. I filmed until main engine cutoff and booster separation occurred just as we approached sunrise on the Himalayas. An unforgettable sight in an unforgettable week…
      Life goes on, even in space. We’re here to stay…
      Frank
      View the full article
    • By NASA
      On Sept. 10, 2009, the Japan Aerospace Exploration Agency (JAXA) launched its first cargo delivery spacecraft, the H-II Transfer Vehicle-1 (HTV-1), to the International Space Station. The HTV cargo vehicles, also called Kounotori, meaning white stork in Japanese, not only maintained the Japanese Experiment Module Kibo but also resupplied the space station in general with pressurized and unpressurized cargo and payloads. Following its rendezvous with the space station, Expedition 20 astronauts grappled and berthed HTV-1 on Sept. 17, and spent the next month transferring its 9,900 pounds of internal and external cargo to the space station and filling the HTV-1 with trash and unneeded equipment. They released the craft on Oct. 30 and ground controllers commanded it to a destructive reentry on Nov. 1.

      Left and middle: Two views of the HTV-1 Kounotori cargo spacecraft during prelaunch processing at the Tanegashima Space Center in Japan. Right: Schematic illustration showing the HTV’s major components. Image credits: courtesy JAXA.
      The HTV formed part of a fleet of cargo vehicles that at the time included NASA’s space shuttle until its retirement in 2011, Roscosmos’ Progress, and the European Space Agency’s (ESA) Automated Transfer Vehicle that flew five missions between 2008 and 2015. The SpaceX Cargo Dragon and Orbital (later Northrup Grumman) Cygnus commercial cargo vehicles supplemented the fleet starting in 2012 and 2013, respectively. The HTV weighed 23,000 pounds empty and could carry up to 13,000 pounds of cargo, although on this first flight carried only 9,900 pounds. The vehicle included both a pressurized and an unpressurized logistics carrier. Following its rendezvous with the space station, it approached to within 33 feet, at which point astronauts grappled it with the station’s robotic arm and berthed it to the Harmony Node 2 module’s Earth facing port. Space station managers added two flights to the originally planned seven, with the last HTV flying in 2020. An upgraded HTV-X vehicle will soon make its debut to carry cargo to the space station, incorporating the lessons learned from the nine-mission HTV program.

      Left: Technicians place HTV-1 inside its launch protective shroud at the Tanegashima Space Center. Middle left: Workers truck the HTV-1 to Vehicle Assembly Building (VAB). Middle right: The HTV-1 atop its H-II rolls out of the VAB on its way to the launch pad. Right: The HTV-1 mission patch. Image credits: courtesy JAXA.
      Prelaunch processing of HTV-1 took place at the Tanegashima Space Center, where engineers inspected and assembled the spacecraft’s components. Workers installed the internal cargo into the pressurized logistics carrier and external payloads onto the External Pallet that they installed into the unpressurized logistics carrier. HTV-1 carried two external payloads, the Japanese Superconducting submillimeter-wave Limb Emission Sounder (SMILES) and the U.S. Hyperspectral Imager for Coastal Ocean (HICO)-Remote Atmospheric and Ionospheric detection System (RAIDS) Experiment Payload (HREP). On Aug. 23, 2009, workers encapsulated the assembled HTV into its payload shroud and a week later moved it into the Vehicle Assembly Building (VAB), where they mounted it atop the H-IIB rocket. Rollout from the VAB to the pad took place on the day of launch.

      Liftoff of HTV-1 from the Tanegashima Space Center in Japan. Image credit: courtesy JAXA.

      Left: The launch control center at the Tanegahsima Space Center in Japan. Middle: The mission control room at the Tsukuba Space Center in Japan. Image credits: courtesy JAXA. Right: The HTV-1 control team in the Mission Control Center at NASA’s Johnson Space Center in Houston.
      On Sept. 10 – Sept. 11 Japan time – HTV-1 lifted off its pad at Tanegashima on the maiden flight of the H-IIB rocket. Controllers in Tanegashima’s launch control center monitored the flight until HTV-1 separated from the booster’s second stage. At that point, HTV-1 automatically activated its systems and established communications with NASA’s Tracking and Data Relay Satellite System. Control of the flight shifted to the mission control room at the Tsukuba Space Center outside Tokyo. Controllers in the Mission Control Center at NASA’s Johnson Space Center in Houston also monitored the mission’s progress.

      Left: HTV-1 approaches the space station. Middle: NASA astronaut Nicole P. Stott grapples HTV-1 with the station’s robotic arm and prepares to berth it to the Node 2 module. Right: European Space Agency astronaut Frank DeWinne, left, Stott, and Canadian Space Agency astronaut Robert Thirsk in the Destiny module following the robotic operations to capture and berth HTV-1.
      Following several days of systems checks, HTV-1 approached the space station on Sept. 17. Members of Expedition 20 monitored its approach, as it stopped within 33 feet of the orbiting laboratory. Using the space station’s Canadarm2 robotic arm, Expedition 20 Flight Engineer and NASA astronaut Nicole P. Stott grappled HTV-1. Fellow crew member Canadian Space Agency astronaut Robert Thirsk berthed the vehicle on the Harmony Node 2 module’s Earth-facing port. The following day, the Expedition 20 crew opened the hatch to HTV-1 to begin the cargo transfers.

      Left: Canadian Space Agency astronaut Robert Thirsk inside HTV-1. Middle: NASA astronaut Nicole P. Stott transferring cargo from HTV-1 to the space station. Right: Stott in HTV-1 after completion of much of the cargo transfer.
      Over the next several weeks, the Expedition 20 and 21 crews transferred more than 7,900 pounds of cargo from the pressurized logistics carrier to the space station. The items included food, science experiments, robotic arm and other hardware for the Kibo module, crew supplies including clothing, toiletries, and personal items, fluorescent lights, and other supplies. They then loaded the module with trash and unneeded equipment, altogether weighing 3,580 pounds.

      Left: The space station’s robotic arm grapples the Exposed Pallet (EP) to transfer it to the Japanese Experiment Module-Exposed Facility (JEM-EF). Right: Canadian Space Agency astronaut Robert Thirsk and NASA astronaut Nicole P. Stott operate the station’s robotic arm to temporarily transfer the EP and its payloads to the JEM-EF.

      Left: The Japanese robotic arm grapples one of the payloads from the Exposed Pallet (EP) to transfer it to the Japanese Experiment Module-Exposed Facility (JEM-EF). Right: European Space Agency astronaut Frank DeWinne, left, and NASA astronaut Nicole P. Stott operate the Japanese robotic arm from inside the JEM.
      Working as a team, NASA astronauts Stott and Michael R. Barratt along with Thirsk and ESA astronaut Frank DeWinne performed the transfer of the external payloads. On Sept. 23, using the station’s robotic arm, they grappled the Exposed Pallet (EP) and removed it from HTV-1’s unpressurized logistics carrier, handing it off to the Japanese remote manipulator system arm that temporarily stowed it on the JEM’s Exposed Facility (JEM-EF). The next day, using the Japanese arm, DeWinne and Stott transferred the SMILES and HREP experiments to their designated locations on the JEM-EF. On Sept. 25, they grappled the now empty EP and placed it back into HTV-1’s unpressurized logistics carrier.

      Left: Astronauts transfer the empty Exposed Pallet back to HTV-1. Middle: NASA astronaut Nicole P. Stott poses in front of the now-closed hatch to HTV-1. Right: European Space Agency astronaut Frank DeWinne, left, and Stott operate the station’s robotic arm to grapple HTV-1 for release.

      Left: The space station’s robotic arm grapples HTV-1 in preparation for its unberthing. Middle: The station’s robotic arm has unberthed HTV-1 in preparation for its release. Right: The arm has released HTV-1 and it begins its separation from the space station.
      Following completion of all the transfers, Expedition 21 astronauts aboard the space station closed the hatch to HTV-1 on Oct. 29. The next day, Stott and DeWinne grappled the vehicle and unberthed it from Node 2. While passing over the Pacific Ocean, they released HTV-1 and it began its departure maneuvers from the station. On Nov. 1, the flight control team in Tsukuba sent commands to HTV-1 to execute three deorbit burns. The vehicle reentered the Earth’s atmosphere, burning up off the coast of New Zealand, having completed the highly successful 52-day first HTV resupply mission. Eight more HTV missions followed, all successful, with HTV-9 completing its mission in August 2020.
      Explore More
      9 min read 30 Years Ago: STS-64 Astronauts Test a Spacewalk Rescue Aid
      Article 2 hours ago 5 min read NASA Tunnel Generates Decades of Icy Aircraft Safety Data
      Article 5 days ago 8 min read 40 Years Ago: STS-41D – First Flight of Space Shuttle Discovery
      Article 7 days ago View the full article
    • By NASA
      NASA Astronaut Don Pettit Soyuz MS-26 Launch
  • Check out these Videos

×
×
  • Create New...